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Fig. 1: Overview of the proposed method. The proposed
model simultaneously performs 3D pose estimation, action
progress prediction, and action classification by learning a
shared representation from foot tactile signals collected with
wearable insole sensors.

Abstract— Estimating human pose, classifying actions, and
predicting movement progress are essential for human–robot in-
teraction. While vision-based methods suffer from occlusion and
privacy concerns in realistic environments, tactile sensing avoids
these issues. However, prior tactile-based approaches handle
each task separately, leading to suboptimal performance. In
this study, we propose a Shared COnvolutional Transformer for
Tactile Inference (SCOTTI) that learns a shared representation
to simultaneously address three separate prediction tasks: 3D
human pose estimation, action class categorization, and action
completion progress estimation. To the best of our knowledge,
this is the first work to explore action progress prediction using
foot tactile signals from custom wireless insole sensors. This
unified approach leverages the mutual benefits of multi-task
learning, enabling the model to achieve improved performance
across all three tasks compared to learning them independently.
Experimental results demonstrate that SCOTTI outperforms
existing approaches across all three tasks. Additionally, we
introduce a novel dataset collected from 15 participants per-
forming various activities and exercises, with 7 hours of total
duration, across eight different activities.

I. INTRODUCTION

Estimating human pose, classifying actions, and predicting
the progress of movements through sensor data are fun-
damental technology in human–robot interaction [1], with
promising applications ranging from sports analysis to daily
activity assistance. Particularly, such information serves as
the foundation for understanding human intent and respond-
ing appropriately. This enables robots to support humans at
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the right moment, resulting in smoother and more intuitive
human–robot interaction.

Recent advances in deep learning and computer vision
have enabled robots to infer human pose [2], classify actions
[3], [4], and estimate progress [5], [6] directly from camera
images.

However, in realistic and natural settings such as liv-
ing and working environments, visual sensing suffers from
occlusion and also raises privacy concerns. By contrast,
tactile sensing is inherently free from occlusion and privacy
issues. Moreover, tactile sensors provide force and pressure
information that is closely related to human posture but
cannot be captured by visual sensors. This makes tactile
sensing a strong alternative or complement to vision-based
methods, supporting practical and more reliable pose, action,
and progress estimation for robotics.

Although several studies have explored tactile-based hu-
man pose estimation [7], [8] and action classification [9], a
key limitation is that these tasks are handled independently,
which results in suboptimal performance. Yet, human pose,
action type, and movement progress are all closely related
aspects of human motion.

Therefore, in this work, we hypothesize that learning the
three tasks in a multi-task framework with shared represen-
tations will allow them to benefit from each other, thereby
improving overall performance.

To effectively train and evaluate our model, we developed
a custom high-resolution wearable insole sensor based on
a prior work [8]. Our insole sensor is low-cost (approxi-
mately $50 per unit) and supports wireless data transmission,
eliminating the need for dedicated sensing infrastructure
or workspace constraints. Using this new device, we col-
lected more than 200,000 synchronized tactile and visual
recordings, spanning over 7 hours, for ground-truth pose
labeling from 15 participants performing a range of activities,
including squatting, lunging, jumping, step-ups, and different
walking styles. These daily exercises are both natural and
diverse, making them highly suitable for training models to
estimate pose, action, and progress in everyday contexts, with
potential extensions to exercise and sports training as well
as elderly care. We plan to release the dataset and sensor
design as an open-source.

To this end, we present the Shared COnvolutional Trans-
former for Tactile Inference (SCOTTI), a unified model
that predicts 3D human poses, action classes, and action
progress from tactile signals. By combining convolutional
and transformer architectures, SCOTTI captures both spa-
tial structure and temporal progression in tactile signals.



SCOTTI outperforms prior approaches across all three tasks,
demonstrating the benefits of multi-task learning on tactile
data. Furthermore, by visualizing the learned feature space,
we show that SCOTTI acquires highly meaningful shared
representations of human movement.

Our main contributions are summarized as follows:
• We propose a Shared COnvolutional Transformer for

Tactile Inference (SCOTTI) that simultaneously pre-
dicts 3D human poses, action classes, and action
progress, leveraging mutual benefits across tasks.

• To the best of our knowledge, this is the first work to
address action progress prediction using tactile signals,
extending the scope of tactile-based research.

• We collected a large-scale dataset of over 7 hours of
synchronized tactile and visual frames from 15 partic-
ipants. The dataset includes various physical activities
such as squats, lunges, jumps, step-ups, and multiple
types of walking. This dataset serves as a valuable
resource for advancing research in pose estimation,
action classification, and progress prediction.

• Evaluation results demonstrate the effectiveness of our
SCOTTI model, outperforming existing methods in 3D
pose estimation, action classification, and progress pre-
diction using tactile signals.

II. RELATED WORKS

A. 3D Pose Estimation with Tactile Signals

Recent methodologies employing images and videos to
predict human poses have seen substantial advancements
[10]. Nonetheless, these camera-based methods encounter
challenges such as occlusion and privacy concerns and
further require dedicated physical space and infrastructure
for camera installation, and are constrained to operate only
within such instrumented environments. As an alternative,
tactile sensor-based pose estimation approaches are proposed
to overcome these limitations.

Two primary types of tactile sensors have been used in
these studies: carpet-type sensors and insole-type sensors.

Carpet-type sensors were initially studied in scenarios
where most of the human body is in contact with the floor.
These studies primarily focused on data collected when
people were lying on beds, targeting applications in the
medical field [11]–[13]. Subsequent research shifted to more
general scenarios, such as daily activities and exercises [8].
Using data extracted from carpet-type tactile sensors, they
proposed CNN-based deep learning models to predict full-
body 3D poses. Unlike our shared representation approach,
they performed action classification by freezing the encoder
of the trained model and adding a linear classifier on top for
fine-tuning. Additionally, methods leveraging synthetic data
from simulations to assist in 3D pose prediction, rather than
collecting real tactile data, have also been proposed [14],
[15]. However, a limitation of carpet-type sensors is their
spatial constraint.

In contrast, insole-type wearable sensors provide better
flexibility for movement without space constraints. Human

pose estimation using insole sensors holds significant poten-
tial for various applications, as shoes are commonly worn in
daily life. While some studies focused on lower-body pose
prediction [16], [17], insole-type sensors are also capable
of predicting full body 3D pose by utilizing high-resolution
sensing [18]. The recent work achieved comparable perfor-
mance to camera-based methods on 3D pose estimation by
utilizing foot pressure and IMU together [7].

These existing studies have proposed models that only
focus on pose estimation, without performing additional
tasks.

B. Action Classification with Tactile Signals

While there are relatively few studies on action classi-
fication using tactile signals, some notable research exists.
A significant example is the spatio-temporal feature ap-
proach proposed by [9]. Unlike earlier studies that relied on
simple CNN networks [19], they utilized transformers and
introduced a pre-training task and embeddings capable of
effectively processing both the spatial and temporal features
of tactile data. Their method utilizes not only positional
embeddings commonly used in transformer models, but also
tubelet embeddings in video processing. Both of the two
works are based on insole-type tactile sensor.

C. Action Progress Prediction and Stage Classification

Progress prediction is an actively studied task in the
visual domain. Early work utilized simple convolutional and
recurrent networks to predict progress [6]. They labeled
video clips by linearly assigning progress values ranging
from 0 to 1, from the start to the end of the clip. A notable
methodological improvement involved predicting progress by
aligning images within videos. [20] proposed temporal cycle-
consistency learning, which learns useful representations in a
self-supervised manner by temporally aligning images across
different videos. However, their work focused on action stage
classification rather than predicting continuous progress.
Subsequent studies enhanced this approach by incorporating
global temporal alignment [21] and video-level cues [22].
Beyond action stage classification, [5] addressed continuous
progress prediction using self-supervised video alignment.

Intuitively, action progress prediction is related to action
classification. [23] proposed a progress-aware online action
segmentation approach for procedural task videos, where
predicted progress was used to improve action classifica-
tion. This mutual benefit has also been observed in other
applications. For example, [24] reported a performance boost
when gesture recognition and progress prediction were si-
multaneously learned on surgical data. A similar approach
was applied to action recognition and progress prediction
for human-centric intelligent manufacturing data [25].

Where these works are from the visual domain, there is
related research in the tactile domain. [26] explored stage
classification for hand manipulation tasks, considering a
limited number of stages (4-6) per action. However, the
challenges of predefining a detailed dictionary of fine-grained
phases, combined with the significant cost of annotating



tactile frames for many action phases, make this approach
impractical for real-world scenarios. Although they also
proposed shared representations for tactile learning, their
work was centered on hand actions rather than the more
complex whole-body actions.

III. DATASET

In this section, we describe details of our dataset and
tactile sensing hardware as well as labeling process for the
ground truth 3D pose and progress labels.

A. Tactile Sensing Hardware

We build custom tactile sensing hardware to efficiently
collect high-resolution data of foot pressure, which was
adapted from prior sensor designs [8] into an insole form
factor. Our insole sensor system incorporates a wireless
piezoresistive pressure sensor insole, featuring over 500 sen-
sors per foot, designed for high-resolution tactile data acqui-
sition. Each insole consists of a grid formed by orthogonally
aligned copper threads as electrodes on opposite sides of
piezoresistive films. The intersections of these electrodes are
the sensors, allowing for precise pressure mapping. Costing
around $50 per unit, these insoles are cost-effective and easy
to manufacture, ideal for large-scale data collection. The
tactile signals are read by a microcontroller board attached
to the ankle and wirelessly transmitted at 16Hz to a paired
board connected to a computer. The batteries and boards are
attached to the ankle using elastic bands.

B. Data Collection

To obtain ground-truth body pose during data collection,
we used visual sensing; this visual input is only for labeling
and is not required at deployment. We employed XRmocap
[27], an open-source multi-view motion capture framework.
Data was collected using six strategically positioned cameras
to capture diverse viewing angles. We extracted 19 keypoints
for each person, including head, neck, shoulders, elbows,
wrists, hips, knees, ankles, heels, small toes, and big toes.

Our high-resolution system accurately captures foot pres-
sure, improving 3D human keypoints’ prediction from tactile
inputs alone. We have collected over 200,000 synchro-
nized tactile and visual frames. This dataset was recorded
from 15 participants, each performing eight distinct actions:
squatting, lunging, step-up exercise, jumping, side walking,
in-place walking, backward walking, and walking. These
actions encompass a wide range of human movements, from
common exercises such as squats and lunges to various
walking patterns, providing rich information about human
motion.

C. Action Progress Labels

A key contribution of our dataset is the provision of
progress labels. In this section, we introduce how we labeled
the progress for each data frame.

In everyday exercises and movements such as squats,
lunges, and walking, the definition of progress is intuitive
and straightforward, as each action can be represented as a

simple cycle — by start and end points for squats and lunges,
or by a step cycle in walking. For example, in the case of
squats, a single action is defined as the performer gradually
lowering their body by pushing their hips back, returning
to the starting position after reaching a sufficient depth. In
other words, as the body descends from the starting position,
the progress increases, and when the performer reaches
the lowest position and returns to the starting position, the
progress reaches 100%.

This perspective can also be applied to define progress
in other movements. For squats and lunges, we define a
single action as starting from the initial posture, performing
the movement, lowering the body, and then returning to
the initial posture. For jumps, a single action is defined as
the body leaving the ground and then landing back on it.
A single action of step-up exercise is defined as stepping
onto a platform with one foot, bringing the other foot onto
the platform, and then stepping down. For various walking
motions, a single action is defined as the process of taking
a step forward with one foot.

Specifically, we define a progress variable p ∈ [0, 1] for
a single repetition of an action using an arbitrary indicator
value h, which represents the progress-relevant measurement
of the action. For example, h could be the vertical position of
a joint, the angle of a limb, or any other meaningful measure.
In case of squat, h could be z-position of middle hip. Assume
that h moves periodically between a maximum value hmax

and a minimum value hmin. We mark:
• Start posture (e.g., initial position): p = 0, h = hmax,

and t = tstart.
• Midpoint posture (e.g., halfway through the action):

p = 0.5, h = hmin, and t = tmid.
• End posture (e.g., returning to the initial position): p =

1, h = hmax, and t = tend.
We detected start, middle, and end points by detecting

maximum and minimum peaks of the h values. The motion
from hmax to hmin corresponds to progress increasing from
0 to 0.5, and the motion from hmin back to hmax corresponds
to progress increasing from 0.5 to 1.

Let h(t) be the indicator value at time t. Define:
• hmax: the maximum observed value of h (start/end

posture),
• hmin: the minimum observed value of h (midpoint

posture).
We compute the progress p(t) as follows:

p(t) =


0.5× hmax − h(t)

hmax − hmin
, if tstart ≤ t ≤ tmid,

0.5 + 0.5× h(t)− hmin

hmax − hmin
, if tmid < t ≤ tend.

(1)

This method can be applied to a wide range of actions
by appropriately choosing h and defining the mapping from
h-values to the progress scale [0, 1]. For lunge, squat, and
step-up exercise, we define h as the z-position of the middle
hip (Mhip,z). For jump, −Mhip,z is used. For walking and



side-walking, h is the Euclidean distance between heels
(dheel = ∥Lheel − Rheel∥). For in-place walking, h is the
maximum z-position of the heels (max(Lheel,z, Rheel,z)),
and for backward walking, h is the maximum change in heel
positions over time (max(dt−5

heel, . . . , d
t
heel)), calculated over

a window of 5 frames.
Note that h is used solely for labeling and is not provided

as input to the model. During training, only the progress
value p(t) is given as a label and is not used as an input
feature, so the model must implicitly learn to predict p(t).
The tactile frames are the only inputs to the model.

IV. METHOD

In this section, we introduce our SCOTTI model and
describe details of network architecture and loss function.

A. Network Architecture

We propose a SCOTTI to effectively extract and en-
code spatio-temporal features from tactile input data. The
proposed model effectively combines the spatial feature
extraction capabilities of CNNs with the sequential modeling
strengths of transformers. The model predicts pose, action
class, and action progress at time t, while receiving input
data from the time range t − 1 − T to t − 1. The input
data consists of a sequence of T tactile signals from the left
and right feet, structured as a sequence of 2D frames with
dimensions H × 2W for a sliding window of size T . Each
tactile frame for the left and right feet has a shape of H×W .

To effectively handle spatial information, each frame is
processed independently by the CNN feature extractor, which
comprises two convolutional layers, each followed by ReLU
activation functions and pooling layers. The output from
the CNN feature extractor is flattened and passed through
a fully connected layer to project it into an embedding
space of dimension E. The embeddings of the T frames
are concatenated along the temporal dimension, forming
a tensor of shape T × E. A class token, initialized as a
learnable parameter with dimensions 1× E, is appended to
the front of the sequence to allow the transformer encoder to
learn a global representation of the tactile signals. Learnable
positional encodings are added to the sequence embeddings
to encode temporal information. The encoded sequence is
then fed into the transformer encoder.

A weighted mean pooling is applied along the temporal
dimension of the output of the transformer encoder, pro-
ducing the final representation of the tactile signals. This
shared representation is fed into three separate multi-layer
perceptrons (MLPs) to predict pose, action class, and action
progress, respectively.

B. Loss Function

For pose estimation, we use the sum of Mean Per Joint
Position Error (MPJPE) and Mean Per Joint Angle Error
(MPJAE). For action classification, we employ the standard
cross-entropy loss, and for progress regression, we utilize the
Mean Squared Error (MSE) loss. The total loss function is

a weighted sum of the three losses. The total loss is defined
as:

Ltotal = wpose Lpose + waction Laction + wprogress Lprogress, (2)

where Lpose = MPJPE + MPJAE, and wpose, waction,
wprogress are weighting coefficients for each term. Since the
three tasks use different loss functions, the weights serve to
normalize differences in scale, rather than to indicate task
importance.

V. RESULT

A. Model Training and Evaluation

Evaluation Method. We divided the dataset of 15
participants into random splits of 10 for training and 5 for
testing, ensuring that evaluation was always performed on
participants unseen during training. To reduce dependency
on a particular split, we created three train-test partitions,
trained a separate model on each, and reported the final
metrics as the average across these runs. All activities were
trained together rather than separately by activity, and the
same subject splits were consistently applied across pose
estimation, action classification, and progress regression.

Metrics. For pose estimation, we evaluate using the stan-
dard MPJPE metric. For action classification, we report the
classification accuracy across 8 action classes. For progress
regression, we evaluate using the Mean Squared Error (MSE)
and the Average Progress Precision (APP) metric proposed
by [6]. Throughout the tables, we use arrows to indicate the
desired direction for each metric (↓: lower is better, ↑: higher
is better), and highlight the best results in bold.

To compute APP, we first define a successful detection as
a case where the absolute difference between the predicted
progress ẑi and the ground-truth progress zi is less than a
progress margin m:

Successi =

{
1 if |ẑi − zi| < m,

0 otherwise.
(3)

Based on this criterion, Progress Precision is calculated as the
ratio of successful detections to the total number of samples.
APP is then derived as the area under the Precision-Margin
curve, where x axis is m and y axis is Progress Precision.
Baselines. We demonstrate the superior performance of our
approach by comparing our method with state-of-the-art ar-
chitectures that proposed for pose estimation and action clas-
sification. These models are well-suited for predicting pose,
action, and progress from tactile signals. They have demon-
strated competitive performance on tactile sensing–based
human pose estimation using specialized architectures, and
several studies [8], [18] employed piezo-resistive sensors
which is similar to ours, suggesting that the models are likely
to work effectively with our data as well.

We considered four baselines for pose estimation, one
baseline for action classification, and one baseline for
progress prediction–a total of six baselines.

The baselines for pose estimation are as follows:



TABLE I: Comparison of SCOTTI with baselines. Arrows indicate the desired direction for each metric, and bold numbers
indicate the best performance.

Model Pose Estimation Action Classification Progress Prediction

MPJPE (mm) ↓ Accuracy (%) ↑ APP ↑ MSE ↓

Voxel-CNN 104.91 - - -
Sep-CNN 100.57 - - -
Res-CNN 98.51 - - -
GCN-Transformer 117.81 - - -

STAT - 84.56 - -

Random - - 0.6904 0.1448

SCOTTI (Ours) 96.63 90.06 0.8952 0.0223

TABLE II: Comparison of SCOTTI with multi-task learning versions of baselines. Arrows indicate the desired direction
for each metric, and bold numbers indicate the best performance.

Model Pose Estimation Action Classification Progress Prediction

MPJPE (mm) ↓ Accuracy (%) ↑ APP ↑ MSE ↓

Voxel-CNN 103.55 80.38 0.8770 0.0288
Sep-CNN 101.05 78.18 0.8668 0.0330
Res-CNN 99.00 82.59 0.8778 0.0278
GCN-Transformer 124.27 61.02 0.8191 0.0537

STAT 99.61 86.36 0.8894 0.0242

SCOTTI (Ours) 96.63 90.06 0.8952 0.0223

• Voxel-CNN [8]: This model adopts a CNN to predict
3D heatmaps for each keypoint from tactile signals. The
final pose prediction is generated by performing a soft
argmax operation on the heatmaps.

• Sep-CNN [18]: This model utilizes a two distinct CNN
layers to separately process left and right foot tactile
signals.

• Res-CNN [28]: PressNet is originally designed to pre-
dict foot pressure from human pose, we used an inversed
version of PressNet to predict pose from foot pressure.
This inversed version of PressNet already been used as
a baseline in previous work [7]. The core architectural
novelty of this model is residual connection, so we refer
this model as Res-CNN

• GCN-Transformer [7]: They utilizes Graph Convolu-
tional Network (GCN) [29] with transformer network
to predict pose from foot pressure and IMUs, we used
a pressure-only version of SoleFormer. Note that we
made a minimal change from the original model by
only removing the modules for IMUs. Also we adopted
cyclic loss same as proposed in the paper.

The baselines for action classification are as follows:
• STAT [9]: This utilizes temporal pretraining and spatio-

temporal embeddings with VideoMAE approach [30], to
perform action classification from foot tactile signals.
We used codes provided by the authors.

Since there is no prior work on action progress prediction,
we used random prediction as a baseline.

Additionally, we compared our model with a multi-task
version of these baselines, incorporating the same MLP de-
coder structure as our model to facilitate multi-task learning

across the three tasks.
Implementation Details. We used a window size of T =
40 and an embedding dimension of E = 512. The size of
the tactile frames obtained from the left and right feet are
H = 32 and W = 22, respectively. We used loss coefficient
wpose = 0.01, waction = 1, and wprogress = 1. The learning rate
was set to 10−4, with a weight decay of 10−4. To ensure a
reduction in loss, we employed learning rate scheduling and
conducted training for 25 epochs for each train and test set
pair. The model is optimized by Adam optimizer [31]. We
applied random shifting data augmentation to all baselines
and our approach to prevent overfitting.

B. Overall Performance

The results comparing our model with baselines are pre-
sented in Table I. Overall, our SCOTTI model achieves supe-
rior performance, successfully generalize to unseen subjects.
For pose estimation, SCOTTI achieves the lowest MPJPE
of 96.63 mm. In action classification, SCOTTI achieves an
accuracy approximately 5.5 percentage points higher than
STAT. For progress prediction, SCOTTI achieves an MSE
of 0.0223, which is significantly lower than the random
prediction benchmark of 0.1448. SCOTTI also highly out-
performs random prediction in APP, with a value of 0.8952.
The most notable aspect is that, while existing baselines are
specialized for individual tasks, our SCOTTI model achieves
these results more efficiently with a single unified model,
and further introduces progress prediction as a novel task
not addressed in prior work.

We also compared our model with multi-task learning
versions of the baselines, as shown in Table II. Even when



Fig. 2: Qualitative result of pose estimation and progress prediction results for lunges (left) and squats (right). The
results demonstrate SCOTTI’s ability to accurately predict both pose and progress for different activities.

Fig. 3: Progress Precision-Margin (PM) curve. PM-curve
with random prediction baseline (left). PM-curve with multi-
task version of baselines (right).

compared to multi-task versions of the baseline models,
SCOTTI demonstrates superior performance. Comparing the
single-task baselines in Table I with the multi-task baselines
in Table II reveals negligible performance improvements for
the existing baselines. For instance, the MPJPE of the Voxel-
CNN model only slightly improves from 104.91 mm in the
single-task version to 103.55 mm in the multi-task version.
Similarly, other models show either marginal improvements
or slight performance degradation: Sep-CNN (100.57 mm
→ 101.05 mm), Res-CNN (98.51 mm → 99.00 mm), and
GCN-Transformer (117.81 mm → 124.27 mm). For action
classification, similar trends are observed. STAT improves
slightly from 84.56% → 86.36%. These results supports
that SCOTTI can effectively leverage the mutual benefits of
the three tasks—pose estimation, action classification, and
progress prediction.

We visualized the representative trials of pose estimation
and progress prediction in Fig. 2. The figure on the left
illustrates the results for lunges, while the figure on the
right presents the results for squats. These visualizations
demonstrate that our model can accurately perform both pose
estimation and progress prediction.

We also report the progress-margin curve, shown in Fig. 3,

Fig. 4: Confusion matrix for action classification. While
SCOTTI achieves high accuracy overall, misclassifications
are observed between actions with similar tactile signal pat-
terns. In particular, step-up exercises are sometimes misclas-
sified as SideWalking or Lunge, and conversely, SideWalking
samples are often confused with step-up exercises.

which shows that our model outperforms baselines on all
margin values.

The confusion matrix for action classification is visualized
in Fig. 4. The results show that the model generally performs
accurate classification; however, it occasionally fails to dis-
tinguish between actions with similar tactile signals. Notably,
the misclassified samples often involve actions such as step-
up exercises, side walking, and backward walking, which
share similar tactile signal patterns.



(a) Importance of foot
regions.

(b) t-SNE by progress values. (c) t-SNE by action
labels.

Fig. 5: Analysis of SCOTTI. (a) Importance of different foot regions for SCOTTI across tasks, highlighting the central foot
regions’ significance. (b) t-SNE visualization of shared features based on progress values, showing structured patterns for
different actions. (c) t-SNE visualization of shared features based on action labels, demonstrating well-clustered features for
individual actions.

TABLE III: Comparison of SCOTTI with single-task
versions.

Model
Pose

Estimation
Action

Classification
Progress

Prediction

MPJPE (mm) ↓ Accuracy (%) ↑ APP ↑ MSE ↓

Pose Only 101.61 - - -
Action Only - 87.39 - -
Progress Only - - 0.8866 0.0264

All Tasks 96.63 90.06 0.8952 0.0223

C. Ablation Study on Shared Representation

For comparison, we constructed single-task variants of
SCOTTI by retaining only the task-specific MLP head corre-
sponding to each task, while keeping the encoder unchanged.
We then demonstrate the benefits of multi-task learning
by comparing the multi-task and single-task versions. The
results are shown in Table III. In most metrics, multi-task
model exhibits significant performance improvements. For
instance, the MPJPE is reduced by 4.98 mm (101.61 →
96.63). The accuracy of action classification increases by
2.67%p (87.39 → 90.06). For progress prediction, both APP
and MSE show improvements, with lower error values in the
multi-task model.

D. Ablation Study on Sensing Region

We visualized the importance of each foot region across all
three tasks in Fig. 5(a) to better understand human motion.
The importance was calculated by masking each foot region
of the data and observing the resulting increase in the total
loss of the trained model. The results show that the central
regions of the foot, where contact is more consistent, have
higher importance values. This is because the edges of the
foot are less likely to make contact and provide meaningful
information. Interestingly, the central part of the foot is
significantly more important than the heels. These findings

enhance our understanding of human movement.

E. Visualization of Shared Feature Space

We show that our model has learned meaningful shared
features from tactile signals by visualizing the shared features
using t-SNE (t-distributed Stochastic Neighbor Embedding)
[32]. t-SNE is a nonlinear dimensionality reduction technique
that projects high-dimensional data into a low-dimensional
space while preserving local structure for visualization. The
results are shown in the Fig. 5(b) and (c).

The middle figure visualizes the features based on progress
values. Interestingly, walking types and lunges, which in-
volve alternating foot movements, form ring-like structures.
Along these rings, the progress increases from 0 to 1, with
the two segments of the ring corresponding to each foot—one
segment represents the left foot, and the other represents the
right foot. For example, the left segment of in-place walking
represents the scenario where the left foot is lifted while the
right foot is in contact with the ground. Conversely, the right
segment represents the scenario where the left foot is on the
ground and the right foot is lifted. This can be observed
through the tactile images shown in the figure. However, the
features of jumping form a single segment, as both feet move
simultaneously during a jump. For step-up exercises, the
movement involves stepping onto the platform and stepping
down, resulting in a continuous line with distinct start and
end points. The right figure visualizes the features based
on actions. The results show that features from the same
actions cluster well. These findings indicate that the model
has learned representations containing useful information of
tactile signals, which can potentially be utilized for new
tasks.

VI. CONCLUSION

This paper presents SCOTTI, a Shared COnvolutional
Transformer for Tactile Inference, designed to predict 3D



human poses, action classes, and action progress simul-
taneously. By leveraging a shared representation, SCOTTI
demonstrates that multi-task learning can outperform indi-
vidual task-specific approaches, achieving superior results in
all evaluated metrics and successfully generalizing on unseen
subjects. Our contributions include the introduction of a uni-
fied model, the novel application of tactile signals for action
progress prediction, and the creation of a comprehensive
dataset with over 200,000 tactile and visual frames across
diverse activities.

Experimental results highlight SCOTTI’s capability to
handle the complexity of multi-task learning efficiently.
Additionally, the dataset and insights into the importance
of specific foot regions and shared feature spaces underline
the broader applicability of tactile-based research. These
findings can aid leveraging tactile sensing in healthcare,
sports analysis, robotics, and beyond.
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