
Vol.:(0123456789)

Multimedia Tools and Applications (2024) 83:12059–12087
https://doi.org/10.1007/s11042-023-15742-x

1 3

Deep ensemble learning of tactics to control the main force
in a real‑time strategy game

Isaac Han1 · Kyung‑Joong Kim1 

Received: 6 November 2022 / Revised: 11 April 2023 / Accepted: 18 April 2023 /
Published online: 24 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Professional StarCraft game players are likely to focus on the management of the most
important group of units (called the main force) during gameplay. Although macro-level
skills have been observed in human game replays, there has been little study of the high-
level knowledge used for tactical decision-making, nor exploitation thereof to create AI
modules. In this paper, we propose a novel tactical decision-making model that makes
decisions to control the main force. We categorized the future movement direction of the
main force into six classes (e.g., toward the enemy’s main base). The model learned to pre-
dict the next destination of the main force based on the large amount of experience repre-
sented in replays of human games. To obtain training data, we extracted information from
12,057 replay files produced by human players and obtained the position and movement
direction of the main forces through a novel detection algorithm. We applied convolutional
neural networks and a Vision Transformer to deal with the high-dimensional state repre-
sentation and large state spaces. Furthermore, we analyzed human tactics relating to the
main force. Model learning success rates of 88.5%, 76.8%, and 56.9% were achieved for
the top-3, -2, and -1 accuracies, respectively. The results show that our method is capable
of learning human macro-level intentions in real-time strategy games.

Keywords  Decision-making · Deep learning · Real-time strategy game · StarCraft

1  Introduction

In the last decade, artificial intelligence (AI) has been extensively studied for real-time
strategy (RTS) games, because these games pose various challenging problems owing to
their large state and action spaces and real-time actions. In RTS games, players perform
several decisions simultaneously, such as managing resources, scouting an opponent’s

 *	 Kyung‑Joong Kim
	 kjkim@gist.ac.kr

	 Isaac Han
	 lssac7778@gm.gist.ac.kr

1	 School of Integrated Technology, Gwangju Institute of Science and Technology, 123,
Cheomdangwagi‑ro, Buk‑gu, 61005 Gwangju, South Korea

http://orcid.org/0000-0002-7732-0817
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-15742-x&domain=pdf

12060	 Multimedia Tools and Applications (2024) 83:12059–12087

1 3

territory, controlling units, constructing buildings, and engaging in combat [8]. The most
popular series of RTS games include StarCraft, Warcraft, Company of Heroes, Total War,
and Command & Conquer.

In RTS gameplay, players need to enact tactical decisions regarding where, when, and
how to attack enemy units and structures under uncertain conditions. As such, devising tac-
tical decisions while managing the enemy’s tactics with limited information is an extremely
challenging problem [1]. To this end, previous studies have proposed a tactical decision-
making method for RTS games, such as a Bayesian approach [66] and a Monte Carlo tree
search [62]; however, these methods have yielded only simple heuristics-based models. In
contrast, deep learning can manage high-dimensional data, to create complex models that
can overcome the weaknesses of such heuristics-based models. Few studies have applied
deep learning to predict the tactical decisions in RTS games. In particular, each of these
studies considered various kinds of tactical decisions such as predicting where to attack or
defend [45], types of units or buildings to attack [75], and selecting one of the handcrafted
scripts [5].

This study focused on the tactics related to the main force, i.e., managing units grouped
as forces is a common strategy in RTS games. Thus, determining the actions of forces is an
essential tactical aspect and controlling the main force is particularly important, because it
is the strongest force. We interviewed a professional human player, which revealed that the
decision-making processes related to the main force were the most important after the very
early stage of the initial build order execution in StarCraft. In addition, the present analysis
of human replay data revealed that 40% of the units pertain to the main force and account
for 60% of the influence.

The proposed method employed deep learning models to learn the decision-making
skills of expert human players from replay files and predict the upcoming movement
direction of the main force. We acquired nearly 12,000 replays from online sources and
extracted 3 million data tuples. Moreover, we provided a comprehensive analysis of the
data, and the results revealed that the main force is essential for the game. To efficiently
predict the movement direction, we categorized the destination of the main force into six
categories (Fig. 1). We trained an ensemble model comprising CNNs, a ViT, and decision
tree, and the proposed model outperformed all the existing deep learning-based tactical
decision-making methods. To the best of our knowledge, this is the first demonstration of
direct machine learning of tactical decisions pertaining to the main force based on replays.

The contributions of this study are stated as follows:

•	 We propose a novel approach for learning vital human skills from replay files, namely,
deciding the upcoming direction of the main force. We developed an ensemble model
comprising CNNs, a ViT, and a decision tree using approximately 3 million data tuples.
The difficulty of learning was minimized through a new input data representation,
including the considerations of match type (Protoss [P] vs. Terran [T], P vs. Zerg [Z],
etc.). The experimental results revealed that the proposed method achieved learning
success rates of up to 92.9%, 81.4%, and 63.3% for the top-3, -2, and -1 accuracies,
respectively.

•	 We analyzed human decision-making processes related to the main force and developed
a novel algorithm for main force detection. In addition, we extracted approximately 3
million data samples from 12,057 replays of human games and constructed a dataset to
predict the direct of the main force.

12061Multimedia Tools and Applications (2024) 83:12059–12087	

1 3

2 � Background

2.1 � StarCraft AI

StarCraft has been important for RTS game research since 2010. The Brood War Appli-
cation Programming Interface (BWAPI) allows researchers to implement customizable AI
players into StarCraft: Brood War, which is one of the most successful RTS games. BWAPI
is not an official interface provided by the developer of StarCraft, Blizzard, but it never-
theless allows for the creation of AI players. Since 2010, the AI community has organ-
ized international StarCraft AI competitions and conferences, which have helped promote
the development of AI techniques for the RTS game community [10, 22]. RTS researchers
have used StarCraft to test their algorithms [53, 57]. The game’s popularity has attracted
many researchers. Also, it is easy to access replays of human games on gaming portals, and
it is possible to extract game states and the actions of human players from replay files using
BWAPI. Several platforms are available for RTS research, each with its own unique proper-
ties [3, 9, 52, 54]. StarCraft is renowned for its popularity, commercial success, and inter-
national AI competitions. Due to its popularity since the 1990s, large volumes of replay
files are available, of games involving players ranging from novice to professional. Unlike
other RTS platforms, Blizzard developed Star-Craft for commercial purposes. Recently,
Blizzard and DeepMind released a programming interface for the StarCraft II game envi-
ronment [72].

To build an AI player for StarCraft, many different skills are required. The player should
make high-level decisions, such as strategy or tactics, but also undertake low-level control
like micromanagement. Due to this wide range of required skills, StarCraft AI research
has been conducted to develop modules that perform well in each task and have integrated
them into a complete AI agent. These are the skills mostly studied in the StarCraft AI com-
munity: build order, tactics, macromanagement, and micromanagement.

Fig. 1   Illustration of the main base, main force, and expansion base. Tactical decisions include the future
direction of movement of the player’s main force with respect to six categories (main base, expansion base,
and “Stop”, as well as the enemy’s main force, main base, and expansion base). Typically, any expansion
close to the main base is known as a “front yard” and it is considered part of the main base in this study. For
illustrative purposes, we do not depict the fog of war, which limits the view to the immediate surroundings
of the player’s units and buildings

12062	 Multimedia Tools and Applications (2024) 83:12059–12087

1 3

In the early stage of a match, it is important to select a build order (the sequence of
player actions for producing buildings and units). Professional players usually optimize
their actions in this stage, where small mistakes can make a match difficult to win. Early
methods are usually based on heuristic search algorithms [14]. Another line of research is
using evolutionary computation, which treats a list of build orders as individuals of a popu-
lation [25, 78]. Recent works have dealt with more challenging tasks, such as considering
diversity [42] or planning the build order in an online manner [37].

Making tactical decisions is determining when, where, and how to attack enemy build-
ings and units. Early approaches for tactics have proposed simple models based on heuris-
tics [62, 66]. Deep learning has been used in recent works, with RL [45, 75]. Although the
main force plays an essential role in tactics, previous approaches have not addressed tactics
with regard to the main force. Organizing units into a number of forces is a natural way to
control units efficiently for StarCraft players. In addition, professional players often run the
main force, which is the strongest one among the forces. They create the main force by put-
ting more units and stronger units in a certain force. According to the analysis in this study,
the main force takes about 60% of the influences of the total number of units.

Macromanagement is managing high-level strategies, which may include build
order optimization or tactics. Various tasks belonging to macromanage- ment have been
addressed in previous works. The authors of [33] have used deep RL to decide what unit
to produce in a certain state. Initial strategy has a big influence in StarCraft. Accordingly,
the Bayesian approach has been used to predict the opponent’s initial strategy [67]. Also,
effects of the fog of war have been studied in terms of the opponent’s strategy prediction
[13]. Replays have been used to train a model that predicts strategy and build order [12].
The probabilistic approach is pervasive in macromanagement [19, 67], but recent works
commonly use deep learning [41].

In combat situations, micro-level management of attack units can make a critical dif-
ference to the outcome. Micromanagement, involving rapid manipulation of individual
units to win in combat is an essential skill when playing StarCraft. A variety of methods
have been applied for micromanagement. One of the approaches used is the search-based
method. Many studies have proposed search-based algorithms for micromanagement.

The earlier approach is based on Alpha-Beta search, which is an efficient technique rely-
ing upon heuristic-based state evaluation function [17]. The authors have made improve-
ments through transposition tables and iterative deepening. The algorithm applied on RTS
game bots and achieved enhanced results [15]. Also they have proposed an improved ver-
sion of UCT (Upper Confidence Bound) search method and a novel search algorithm that
greedly search number of portfolios [16]. However, search-based methods suffer from low
speed, making them unusable in real time. Hierarchical Adversarial Search (HAS) has been
proposed to solve this issue [64]. HAS deals with large state- action space through a hier-
archical search paradigm. Another line of research optimizes policies using evolutionary
computation or RL. The policies can be represented as potential fields [56], and neural
networks [24, 82]. In an aspect of RL, micromanagement is primarily considered a multi-
agent problem, which deems each unit as an agent [55]. According to this, micromanage-
ment problems have been used as an evaluation environment for multi-agent RL [23].

In addition to these approaches for developing intelligent modules for a variety of tasks,
a comprehensive method has been proposed to achieve expert-level gameplay in StarCraft.
An easy way to develop comprehensive AI is to integrate each module into a single agent
[45, 79]. Another way is to train using a single comprehensive policy. Multi-agent RL was
used to realize AI with Grandmaster level StarCraft II ability [73]. Moreover, StarCraft

12063Multimedia Tools and Applications (2024) 83:12059–12087	

1 3

is also being used for many application domains, such as web-based interface [4], and an
algorithm for automatically spectating games [36].

2.1.1 � StarCraft AI using replays

Replays of human StarCraft games have great potential for overcoming the weaknesses
of AI bots. Thousands of replay files for StarCraft are readily available on gaming por-
tals, and they include games involving players with different ability levels. Replay extrac-
tion software allows AI researchers to extract all the actions taken by human players from
these replay files. Massive amounts of sample data allow machine learning models to imi-
tate the decision-making processes of human players. Many studies have utilized replays
of human games to build machine learning models to address various problems in RTS
games. For example, RL has been applied to micromanagement, with supervised pre-train-
ing performed based on replays of human games [31], and a neural network trained with
2,005 replays from professional human players was used for macromanagement [38]. In
macromanagement, more recent works have utilized a transformer [70] and replays [41] to
train the models. The Defog-GAN model, which reveals hidden information in StarCraft,
was trained with replays of human games [35]. Facebook has also obtained 65,000 replays
(360GB of data; the STARDATA project [46]). From these data, a team working at Face-
book extracted the total number of units created, match lengths, ratios of resources mined
by each player, and opening clusters. Furthermore the authors of [44] have proposed fea-
ture extraction method to predict the outcome of the StarCraft league. Despite replays fre-
quently being used for building AI for StarCraft, direct learning of tactics from replays of
human games has not been studied previously.

2.2 � Tactical decision‑making

Making tactical decisions using machine learning models has been widely stud- ied in var-
ious domains. The representative one among the domains is RTS games, which require
strategic planning and tactics for the gameplay. The authors of [45] proposed a modular
architecture that can be trained by reinforcement learning and a fully convolutional net-
work (FCN) as their tactics module. However, it considers where to move all units, not
just the main force. In addition, the authors of [75] selected macro action using RL. They
set 54 macro actions, with 17 of them related to tactics. But those actions are to attack
certain types of enemy units or buildings and are not related to the attack location nor the
main force. Also, there has been an approach based on supervised learning, not RL. The
authors of [5] proposed a tactical decision- making module supervised by a search algo-
rithm, which selects one of the handcrafted scripts.

On the other hand, there have been many works on computational approaches for tacti-
cal decision-making in various domains. For autonomous vehicles, the decisions should
be made carefully for safety purposes. Many recent studies in tactical decision-making for
autonomous driving address this issue using deep learning along with RL [30, 81]. Tacti-
cal decisions also play an essential role in team sports. Few studies have used deep neural
networks to support tactical decisions for team sports, such as rugby [74] and football [6].
In contrast, deep learning is relatively less applied to make tactical decisions in StarCaft AI
research.

12064	 Multimedia Tools and Applications (2024) 83:12059–12087

1 3

2.3 � Deep learning for games

CNNs effectively process image data and are thus widely used in game AI, to build
machine learning models for games. Also, a Vision Transformer has recently been used
for image processing, and it performs much better than CNNs.

Many studies have used CNNs to train AI players for various games. Recently, suc-
cessful results have been obtained using CNNs as approximat- ing functions for game
state–action evaluation. For example, DeepMind used a CNN as a Q value approxima-
tion function in its deep Q-Learning algorithm. This algorithm can learn how to play
Atari games at human levels of skill [50]. Unlike the traditional AI approach, the algo-
rithm uses the raw game screen as input for the CNN. In 2016, DeepMind trained a
CNN to predict the decisions of professional Go players, achieving an accuracy of 57%
[61]. The Alpha Go system beat a professional Go player in March 2016, thus dem-
onstrating superior performance of the CNN. CNNs that involve RL have been used
to play various games. A CNN that involves asynchronous RL was used to eval- uate
the racing game known as Torcs [49]. RL with a recurrent convolutional architecture
was used to play a first-person shooter game [43]. The well-known Minecraft game is
used to train RL agents [51]. The multiplayer online battle arena (MOBA) game is both
complex and challenging in terms of AI. MOBA has been played using deep RL [77].
Text-based games are also used to test the performance of novel RL agents [80]. Mon-
tezuma’s Revenge is used to evaluate the exploratory capacities of RL agents [7]. CNNs
are used to build human-like AI agents for automated game testing [27]. Human player
datasets have been used to train CNN agents in match-3 gaming. The RL approach has
been used for the strategic play of match-3 games [60]. CNNs are used to build an AI
agent for the Othello game [48]. The authors of [68] used CNNs as an evaluation func-
tion to train an RL agent.

Buro et al. [65] used an RTS as a simplified testbed for AI algorithms. The cited
authors used twenty-five 10 × 10 planes (“channels” in our study) as inputs for the
CNN; they attempted to predict the winner of a match using match data from 15 AI
bots. They also tested the CNN as an evaluation function for search algorithms. Justesen
et al. trained a neural network using 2,005 replays and achieved a prediction accuracy
of 45.4% with respect to the next build action [38]. CNNs have been used to predict the
winners of the RTS game [32].

CNN-based generative models have recently been used to improve auto- matic game
content generation. A generative adversarial network [26] is a representative deep gen-
erative model widely used in various fields of AI. A generative adversarial network has
been used to generate game content and to automatically create game levels [34]. The
authors of [39] used CNNs to procedurally generate such levels, then compared them
to manually designed levels. The model successfully generated content. The authors
of [40] used an RL-based approach to create procedural content [40]; generation was
regarded as a sequential problem. In the present work, a CNN was used as a perception
module for the RL agent. The quality of the generated content was optimized by the RL;
two-dimensional levels were successfully generated.

CNNs are used to perform various game-related tasks, such as that of pre-dicting
human behavior in size-variant repeated games [71], or game difficulty. CNNs can also
detect residual glitches in video games [47].

“Transformer” [70] was initially developed for natural language processing, but it has
found applications in image processing [21] and RL [11]. Transformer has been applied

12065Multimedia Tools and Applications (2024) 83:12059–12087	

1 3

in games like text adventure games [76], Go [18], and Viz-Doom [63]. For StarCraft,
Transformer has been used for macromanagement [41] and micromanagement. The
authors of [41] used Transformer to predict macro actions. They show that Transformer
generalizes well to unseen data, like an unseen match type (Terran vs Protoss). Trans-
former has also been used with RL for micromanagement in which the method approxi-
mates to the transformer-based joint action-value function that shows better perfor-
mance in micromanagement scenarios. However, ViT is very recent and has found only
a few applications in games [11].

Compared with these previous investigations, our study differs in certain respects.
Unlike previous works, we consider the main force in tactics because, according to our
results, it plays an essential role in this area. We apply state-of-the-art deep learning mod-
els like CNN and ViT to handle high-dimensional data.

3 � Methods

During gameplay, human players gather information, such as the current combat situ-
ation, enemy location, and buildings constructed. They then use this information to
assess the situation and make decisions. We conducted interviews with a single pro-
fessional human player to understand their decision-making strategies. The interviews
were semi-structured and consisted of a series of open-ended questions designed to elicit
information about the players’ decision-making strategies related to the main force. We
have found that the main force plays an important role in tactical decision-making in
Star-Craft, especially after the very early stage of the initial build order execution in
StarCraft. Also, we have found that the movement of the main force can be categorized
into several directions.

Recently, the ability of CNNs to process high-dimensional data at the level that can be
processed by humans has been confirmed in terms of both object recognition and gameplay
[50]. Notably, the ViT has shown promise when used for image recognition [21]. Thus, in
the present study, we used a CNN and ViT to develop a tactical decision-making model,
in which the CNN and Trans- former process high-dimensional input, namely information
from StarCraft. We present an effective decision-making model that operates in a manner
similar to a human player.

3.1 � Detecting the main force

Attack strength differs according to the positions and numbers of attack units. For
example, a group of strong attack units is likely to constitute a powerful army if con-
centrated in one location (Fig. 2). However, it also differs by type of the units, like in
case one forces consist of many weak units and another consist of few powerful units. In
this case it is ambiguous to determine which is the main force. This is because each unit
has a different attack power and range, and is subject to various factors that decrease
power. Thus, it is necessary to integrate the contributions of all units in each location
to understand the total attack power. We define a location’s power as the sum of all
units’ con- tributions (total power). In some cases, the contribution of one strong unit is
greater than the contributions of many weak units. A customized influence map is used
to determine the positions of the main forces. Influence maps have been used widely in

12066	 Multimedia Tools and Applications (2024) 83:12059–12087

1 3

RTS research to calculate the attack force of an army [58, 69], where each unit’s influ-
ence is calculated and integrated into a single value. The main force’s position is simply
determined as that with the highest influence. The unit’s total influence considers the
unit’s influence power (IP), discount factor (DF), and influence range (IR); professional
players determine these parameter values for each unit, considering each unit’s charac-
teristics (see Supplementary Materials). Each unit’s influence is maximized in the area
around it and decreases gradually with distance. The main force detection algorithm is
described in Algorithm 1.

3.2 � Categorization of movement directions for the main force

Due to the limited vision caused by the fog of war, a player can make no observations
beyond their units and buildings. In the very early stages of the match, the players focus
on their initial build orders (constructing buildings and producing units) and exploration
of the game world using scouting units. After several minutes, the players start to produce
attack units and develop new expansion bases to obtain more resources. It soon becomes
important to manage many attack units as a single group to simplify the control tasks.
Human players usually group attack units into a main force and several relatively small
forces; it is not common to divide forces into equally sized armies. After the early build
order stage, players start to control their main force as it moves into their opponent’s area,
returns to the home area, or stops at its current location. These strategic decisions are
made based on all the different types of visual information available to the players. If it
is beneficial, players can wait until an opponent is in close proximity to their base and
simply accumulate attack units to build a large army. However, it is not always desirable
to wait until opponents act because this allows them to perform many tasks without inter-
vention. Thus, it is important to move the main force to the appropriate place at the right
time. According to professional players, the movement direc- tion of the main force can
be categorized into six main types (Fig. 3), where the main force can stop at its current
location, move to the opponent’s area, or return to the home area. The opponent’s area
includes the main base, an expansion base, and their main force. The home area includes
the main base and an expansion base.

Fig. 2   Example of a main force
(the strongest group of attack
units)

12067Multimedia Tools and Applications (2024) 83:12059–12087	

1 3

Fig. 3   Hierarchical categorization of the movement directions of the main force. Green nodes are labeled
according to the task classification

Algorithm 1   Pseudo-code of the main force detection algorithm

12068	 Multimedia Tools and Applications (2024) 83:12059–12087

1 3

The six movement actions for the main force are classified as:

•	 Stop: An absence of movement; the troops remain at their current position without
receiving any commands.

•	 Player’s main base (PMB): Toward the allied main base; mainly applied when retreat-
ing from a battle or when the base is under attack.

•	 Player’s expanded bases (PEBs): To an area far away from the main base; applied
when an expansion base is under enemy attack or needs more defensive forces.

•	 Enemy’s main force (EMF): Toward the location identified as the posi- tion of the
EMF, for an attack; applied when the allied force is deemed superior and capable of
beating the enemy’s troops.

•	 Enemy’s main base (EMB): Taken when the EMF has either been forced to retreat,
is positioned far away from their main base or, on rare occasions, for an assault on the
base.

•	 Enemy’s expanded bases (EEBs): To attack an EEB that is far away from the EMB;
typically applied when the EMF is positioned far from it.

3.3 � Data labeling for human replays

The replay files produced by human players contain all of the actions and game states that
occur during gameplay. The duration of a match can range from several minutes to > 1 h.
In each replay, it is possible to observe the decisions made by human players regarding the
movements of their main force. We categorized these into the six groups delineated above.
It is also possible to extract the locations of the main bases, expansion bases, and main
forces for all of the players in the recorded match. Each player has only one main base and
force, but the number of expansion bases can vary from zero to the maximum allowed by
the map being played upon. Algorithm 2 describes the pseudo-code used to label each time
step in the human replay data. The goal of the algorithm is to assign one of the six catego-
ries by analyzing the decisions made by human players regarding the target directions of
the main force. In our experiment, MAX TIME was set to 30 min and STEP was set to 5 s.
According to the initial analysis, we found that clarifying the main force’s target direction
required ≥ 3 s. If the time was excessively short, the analysis could be hindered by noise
due to physical movement delays or unexpected behavior by the units. If STEP was exces-
sively long (e.g., 10 s), the analysis was likely to miss changes in the decisions made by the
human players regarding the main force’s direction of movement.

3.4 � Deep learning for decision making

In StarCraft, there are three “races”, and each player selects one for each match. The
three races each have their own units and buildings. For experi- enced human players,
it is natural to play better with, and thus favor, one of the three races. However, profi-
cient players typically also play well with the other two races. Considering two-player
matches, there are nine possible match combinations in the game because each player
selects one of the three races; therefore, nine models can cover all match-ups (Table 1).
The input data have 29-35 channels, with maps measuring 32 × 32 (the name of each
channel is listed in the Supplementary Materials). For the unit channels, informa-
tion about the position of a unit is received, and the influence of the unit is added to
the value corresponding to its position on the map. In the case of enemy units, only

12069Multimedia Tools and Applications (2024) 83:12059–12087	

1 3

Algorithm 2   Pseudo-code of the tactical intention labeling algorithm for human replays (the player’s main
force [PMF] corresponds to the Stop class).1. The getOrderTargetPosition() function retrieves the target
position for the unit’s order (from https://​bwapi.​github.​io), which comprises the location to which the unit is
trying to move or attack, 2. This function determines the Target Position based on all commands assigned to
the units in the main force over a specific time (e.g., 5 s). It averages the locations where units are trying to
move or attack

Table 1   Number of input
channels in the CNNs and ViTs

Player Opponent Terrain
Chan-
nels

Total # of
Channels

Race # of channels Race # of channels

Protoss 15 Protoss 15 3 33
Protoss 15 Terran 16 3 34
Protoss 15 Zerg 13 3 31
Terran 16 Protoss 15 3 34
Terran 16 Terran 16 3 35
Terran 16 Zerg 13 3 32
Zerg 13 Protoss 15 3 31
Zerg 13 Terran 16 3 32
Zerg 13 Zerg 13 3 29

https://bwapi.github.io

12070	 Multimedia Tools and Applications (2024) 83:12059–12087

1 3

units that have been seen at least once are added to the map. We used perfect informa-
tion during the data preprocessing stage, the proposed ensemble model was trained
and tested with imperfect information and did not require hidden information in either
stage. The information about the enemy is imperfect because the fog of war restricts
the visibility of enemy units and buildings, such that they are only visible when close
to allied ones. This means that the information observed and fed into the model will be
incor- rect if the enemy moves their units or destroys buildings. The channels after unit
one store information about the buildings built by both players. The first building chan-
nels record the positions of the main buildings used for storing resources for each race.
And the second building channels record the buildings that the enemy’s units can reach
and attack. Finally, the third building channels store the details of all buildings other
than the main and at-risk ones. The last three channels contain details of the terrain
on the map; for each position, flat, hill, and blocked (except for airborne units) areas
are represented. Fig. 4 shows examples of channels inputted to the model, where the
”Enemy Building Base” channel (upper left) stores information concerning the pres-
ence of main bases (Hatchery), while the ”Ally Goliath” channel (upper right) stores
the influences of the attack unit (Goliath).

We built an ensemble model using three models: CNN, ViT, and decision tree. The
majority voting rule is used to ensemble these models. The visualization of overall
architecture is shown in Fig. 5.

For our CNN architecture, we used ResNet 18 [28] and fed the output to three fully
connected layers, which consisted of 1,024, 256, and 6 neurons; the last layer used
Softmax as its activation function. Moreover, the network used rectified linear units
as the activation function for the convolution and fully connected layers. We used the
cross-entropy loss function; the mini-batch size was 2,048. Dropout (p = 0.5) was
applied to the fully connected layers. The CNN was optimized using the Adam opti-
mizer. The learning rate depended on the validation loss, and it was reduced when
improvement ceased. If there was no improvement over 10 epochs, the learning rate
was reduced by the decay rate; the initial learning rate was 0.0001, whereas the initial
decay rate was 0.3.

Our ViT architecture contains three Transformer blocks followed by two fully con-
nected layers with 1,024 and 6 neurons, respectively. The Transformer block contains
an 8 × 8 patch, 1,024 hidden dimensions, and 16 attention heads. For the CNN, we used
the cross-entropy loss function; the mini-batch size was 2,048. Dropout (p = 0.5) was
applied to the fully connected layers. The Adam optimizer was used for optimization.
However, the learning rate was not scheduled; it was fixed at 0.0001 for all training.

The CNN and ViT inputs are images. The size of the input channel is 32 × 32, and
each set of data comprised 29–35 channels. The size of the StarCraft map is 128 × 128
but human players typically view this map by breaking it into smaller sections, so we
used a map size of 32 × 32. This reduced size also had the advantage of decreasing the
amount of input data. A vector of size 4 (game time, minerals, gas, and population)
was directly fed to the fully connected layers of the CNN and ViT. These layers concat-
enated the image features and fed them to the fully connected layers.

The decision tree was the Classification and Regression Tree (CART) algorithm
included in Scikit-learn. We used the Gini impurity to measure the quality of each
split. Unlike a CNN and a ViT, a decision tree cannot accept image inputs. Thus, we
flattened each image input to a vector and fed this to the decision tree. The data used to
train the decision tree were therefore identical to the data used to train the other mod-
els, but their shapes differed.

12071Multimedia Tools and Applications (2024) 83:12059–12087	

1 3

3.5 � Comparative evaluation

For comparative evaluation, we applied several baseline methods to our task. Since our
method is based on the supervision of human demonstrations, it is proper to use previ-
ous methods supervised with human replay data as baselines. However, most previous
tactical decision-making methods [45, 75] are based on RL with no utilization of human
data, which is inappropriate for baselines. Therefore, we use two similar supervised learn-
ing approaches proposed for the macromanagement problem as baselines rather than those

Fig. 4   Example input data for the CNNs and ViT: the “Enemy Building Base” channel, stores main build-
ings (“hatchery”) for a Zerg player (upper left). The “Ally Goliath” channel, stores attack units (“goliaths”)
(upper right). The grid shows the relative locations of the units in the map. The numbers are the “influ-
ences” of units at each position

12072	 Multimedia Tools and Applications (2024) 83:12059–12087

1 3

methods. The first method utilizes Multi Layer Perceptron (MLP) to decide the next build
action [38]. The second method uses a transformer along with CNNs (Transformer with
CNN) [41] to predict the winner and build order. Both methods use human replays as train-
ing data. On the other hand, our approach is based on the ensemble method [20]. Since our
approach adopts the ensemble method, other ensemble methods should be used as base-
lines, such as meta-learning which is a model that makes predictions based on that of other
models. Thus we trained two meta models, the decision tree and support vector machine
(SVM). The meta model accepts yc , yt and yd as inputs; it predicts the true label y, where
yc , yt and yd are the predictions of the CNN, ViT, and the decision tree, respectively.
Finally, to evaluate the effect of the ensemble, we also included component models of the
proposed ensemble approach: CNN, ViT, and the decision tree.

4 � Results and discussion

For our experiment, we designed the proposed model using a well-known deep learn-
ing framework known as Torch, along with the well-known machine learning framework
known as scikit learn.

4.1 � Data analysis

We downloaded StarCraft replays from two well-known game community portal sites,
Ygosu and BWReplays, which include 1,408 replays of Korean professional and semi-pro-
fessional players, and 10,649 replays where the player’s actions per minute, (an important
measure of a player’s skill) were ≥ 250, respectively (Table 2). In total, the data comprised
12,057 replays of games played by experienced humans on various maps, with different
match combinations of the Protoss, Terran, and Zerg races. While collecting replays, we

Fig. 5   Overall architecture of the proposed ensemble approach

Table 2   Replay data collection (Sources: http://​ygosu.​com/​repla​ys and http://​bwrep​lays.​com). Both sources
provide full match replays

Site name Number of replays Proficiency Note

Ygosu 1,408 (Semi-) Professional players Full game replays
BWReplays 10,649 Amateur players over APM 250 Full game replays

http://ygosu.com/replays
http://bwreplays.com

12073Multimedia Tools and Applications (2024) 83:12059–12087	

1 3

made every effort to preserve the privacy of players to the highest possible extent. We only
collected replay files and did not obtain any additional information that could identify the
players.

Three million data samples were extracted at a sampling rate of 5 s and labeled as one
of the six classes. Fig. 6 shows the main force detected in a scene from one match (resolu-
tion = 128 × 128); the supplementary video shows the main force detected throughout a
full match. Our CNN model made predictions based on each sample and the accuracy was
calculated as the ratio of correctly classified samples to all test samples.

To ensure that the replays were of matches played properly (i.e., without hacking or
cheating), we used ”minerals”, one of the resources in StarCraft, as a criterion. For exam-
ple, replays were not included if the mineral count was over 5,000 within 30 min. Typi-
cally, it is difficult to gather this many minerals while also constructing buildings and gen-
erating units. Data were excluded if the main force was not in the scene. At the beginning,
only workers are available to collect minerals or gas, and some time is typically required to
produce attacking units from buildings and resources. Thus, samples started from approxi-
mately 100 s and reached a maximum at 300 s (5 min), gradually decreasing thereafter.
Thus, most of the matches were played for at least 5 min and terminated at some point after
this time.

Figs. 7, 8 and 9 show the basic statistics. The distribution of the six classes shows that
the Stop class was the most common (approximately 25%). Fig. 10 shows the transition
probabilities for the six movement decisions. For example, if the decision at time t was to
Stop, the next decision was Stop 74% of the time, PMB 10% of the time, etc. Using the
table, we constructed a simple predictor to estimate the next decision based only on the
current one. For example, if the current decision was Stop, then the next decision was pre-
dicted as Stop. Using the statistics in the decision transition table, an accuracy of 49% was
achieved.

If we simplify the decision-making problem, players may choose to continue or change
the current movement direction for their main force. For the Stop decision, there was a high
probability that the next decision was to continue with that action. Thus, the main force
usually waited at a location for the player to make a decision, before moving to a target
position with a probability of only 1

4
 . When the main forces to the compared with all force

Fig. 6   Detection of a player’s
main force (circle) at a resolution
of 128 × 128 (from supplemen-
tary video)

12074	 Multimedia Tools and Applications (2024) 83:12059–12087

1 3

Fig. 7   Distribution of data samples according to match time

Fig. 8   Distribution of main force movement classes

Fig. 9   Number of replays for each match type. P: Protoss, T: Terran, v: versus, Z: Zerg

12075Multimedia Tools and Applications (2024) 83:12059–12087	

1 3

was moving somewhere, stopping had a probability of approximately 1
3
-1
2
 , indicating that

players frequently cancelled moves as the situation changed. The PMB → PMB sequence
(40%) denotes a return to the main base, most often because of a need to defend it. The
EMF → EMF sequence (32%) was likely to be the precursor to large-scale combat between
the two main forces. Some sequences represent attacks, such as EMB → EEB (20%) and
EMF → EEB (17%).

To explore how humans control the power of the main force, we calculated the ratios
of the main forces to the compared with all units in terms of both the number of units and
the sum of the influences. The average number ratio of the main force is RatioN

t
 at tth s,

obtained by averaging the ratio of the main force at the tth s of the ith replay. Similarly, the
average ratio of the main force in terms of influence is RatioI

t
 at tth s, obtained by averaging

the ratio of the main force at tth s of the ith replay. The exact formula is as follows:

While Nmain

i,t
 and Ntotal

i,t
 are the numbers of the main force units and all units respectively,

at tth s of the ith replay. Where Imain
i,t

 and Itotal
i,t

 are the summed influences of the main force
units and all units respectively, at tth s of the ith replay. K is the total number of replays.

The RatioI
t
 and RatioN

t
 are shown over time in Figs. 11 and 12, respectively. In the early

stage, both ratios are near 1, which means that only one force exists (most units belong
to the main force). Both ratios decrease sharply until approximately 250 s, then decrease

Ratio
N

t
=
∑

i
(Nmain

i,t
∕Ntotal

i,t
)K

Ratio
I

t
=
∑

i
(Imain
i,t

∕Itotal
i,t

)K

Fig. 10   Transition probability table (x-axis: time t+5 s, y-axis: time t) based on the ground truth data

12076	 Multimedia Tools and Applications (2024) 83:12059–12087

1 3

slowly thereafter. It is noteworthy that the ratio of the number of units (Fig. 12) is above the
ratio for the influence (Fig. 11) after 250 s, but similar before then. This is because, in the
early stage, most units are workers, and so they have similar influences. Subsequently, how-
ever, various battle units have been produced, so the unit influence becomes more diverse.
Because strong units (which have high influence) typically belong to the main force, the
Ratio

I

t
 is higher than the RatioN

t
 . Generally, after the early stage of a match, approximately

40% of units belong to the main force and account for approximately 60% of the influence.

Fig. 11   Average ratios of the
influences ( RatioI

t
 ) of units

belonging to the main force com-
pared with the influences of all
units. The light yellow area is the
standard deviation. The x-axis is
game time (in s, t), and y-axis is
the ratio

Fig. 12   Average ratio of the
number ( RatioN

t
 ) of units belong-

ing to the main force com- pared
with the numbers of all units.
The light blue area is the stand-
ard deviation. The x-axis is game
time (in s, t), and the y-axis is
the ratio

12077Multimedia Tools and Applications (2024) 83:12059–12087	

1 3

This indicates that managing units using one strong main force is a common strategy for
human players, and thus the main force plays an essential role in tactics.

4.2 � Learning and evaluation of the deep learning model

Tables 3, 4 and 5 list the test accuracies of the proposed model and the baseline models for
the nine match types. We trained the nine ensemble models (CNNs, a ViT, and a decision
tree). Our model outperforms the baseline models in terms of all nine match types. The test
top-1, -2, and -3 accuracies of the proposed model were 51.6â€“63.3%, 72.2â€“81.4%, and
85.4â€“92.9%, respectively. Among the nine match types, the proposed model for the Ter-
ran vs. Protoss match achieved the best top-1 accuracy for predicting the main forceâ€™s
direction 5 s later, at 63.3%. The performance of non-ensemble models (CNN, ViT, and
decision tree) varied according to the match type. In the Protoss vs. Protoss match, the ViT
outperformed the others; in the Terran vs. Terran match, the decision tree yielded the best

Table 3   Top-1 test accuracy of the proposed model and baseline models. P: Protoss, T: Terran, Z: Zerg

Ensemble of
CNN, DT, and
ViT (proposed)

CNN Decision
tree (DT)

ViT (Vision
Trans-
former)

Meta
decision
tree

Meta
SVM

MLP [38] Transformer
with CNN [41]

P vs P 59.5 53.3 52.9 55.1 52.9 52.9 48.5 47.8
P vs T 57.9 53.4 51.2 52.6 51.2 51.2 44.3 39.3
P vs Z 55.6 49.8 50.9 50.8 50.9 50.9 41.8 36.4
T vs P 63.3 56.4 57.4 58.8 57.4 57.4 46.7 37.9
T vs T 58.7 52.3 55.5 51.5 55.5 55.5 45.5 33.2
T vs Z 55.4 48.6 49.8 50.3 49.8 49.8 41.6 35.5
Z vs P 54.1 49.1 49.3 49.1 49.3 49.3 40.3 38.5
Z vs T 51.6 44.3 46.5 46.1 46.5 46.5 40.8 35.5
Z vs Z 55.7 51.6 50.1 50.2 50.1 50.1 38.9 38.4
Avg. 56.9 51 51.5 51.6 51.5 51.5 43.2 38.1

Table 4   Top-2 test accuracy of the proposed model and baseline models. P: Protoss, T: Terran, Z: Zerg

Ensemble of CNN, DT,
and ViT (proposed)

CNN ViT (Vision
Transformer)

MLP [38] Transformer
with CNN [41]

P vs P 79.9 71.8 77.9 67.5 65.6
P vs T 76.8 67.1 73.9 60.7 58.2
P vs Z 74.9 67.1 72.1 58.5 55.5
T vs P 81.4 69 79.1 61.8 55.6
T vs T 77.3 67.9 73.2 61.5 58.3
T vs Z 76.5 57.2 73.8 61.4 58.3
Z vs P 73.5 67.1 70.3 57.7 59.1
Z vs T 72.2 58.9 69.1 61.3 59.1
Z vs Z 78.8 73.4 75.9 61 64.5
Avg. 76.8 66.6 73.9 61.3 59.4

12078	 Multimedia Tools and Applications (2024) 83:12059–12087

1 3

result. The accuracies of the meta ensemble models (meta decision tree and meta SVM) are
almost identical to the maximum accuracy of the three models (CNN, decision tree, and
ViT) that form the ensemble. The two methods from previous works, MLP and the Trans-
former with CNN show relatively poor performance compared to other baselines. The aver-
age accuracies of MLP and the Transformer with CNN are 43.2 and 38.1, respectively, in
contrast to the average accuracies of other baselines which are higher than 50. The average
accuracies of the 7 baseline models over the nine match types were 51%, 51.5%, 51.6%,
51.5%, 51.5%, 43.2%, and 38.1% respectively. However, the proposed model, which is built
through a simple ensemble technique (majority voting of three models), yields an average
accuracy of 56.9%. In addition, in terms of the top-2 accuracy, the proposed model for the
Terran vs. Protoss match performed best, with an accuracy of 81.4%. In terms of top-3
accuracy, the model achieved the highest accuracy for the Zerg vs. Zerg match, at 92.9%.
Also throughout top-2 and top-3 accuracies, the ViT shows high performance, close to the
proposed method’s accuracies. Because neither the decision tree nor the SVM delivered
probabilities according to classes, we analyzed only the top-2 and -3 accuracies yielded by
the proposed model, the CNN, and the ViT.

The phenomenon that the proposed ensemble model outperforms all baselines means
that each module of the proposed ensemble model learned a different representation of the
data. Each module has unique advantages and limitations. CNNs are specialized for image
processing; they have strong inductive biases in terms of translation invariance and local-
ity. CNNs thus perform well when image data are sparse. However, the inductive bias can
disturb training if the data are large. The ViT exhibits less inductive bias and can thus learn
unbiased representations if the data are adequate. Unlike the first two models, a decision
tree performs poorly when fed high-dimensional data such as images. However, it is a sim-
pler model. The combination processes data in a complex and diverse manner.

In a comparative view with similar existing methods (MLP[38] and Transformer with
CNN [41]), our model shows the best performance. A further novel finding is that simi-
lar existing methods are worse than other baselines. The average top-1 accuracies of the
other baselines are above 50%, but the MLP and the Transformer with CNN have top-1
accuracies approaching 40. This poor performance can be explained by their inappropriate
network architec- ture. In the case of MLP, it shows poor performance since it is unsuitable

Table 5   Top-3 test accuracy of the proposed model and baseline models. P: Protoss, T: Terran, Z: Zerg

Ensemble of CNN, DT,
and ViT (proposed)

CNN ViT (Vision
Transformer)

MLP [38] Transformer
with CNN [41]

P vs P 91.5 85.6 91 79.6 79.3
P vs T 87.9 75.9 86.8 72.9 72.5
P vs Z 85.9 78.8 84.6 71.6 71.3
T vs P 90.6 79.2 89.7 73.8 74.5
T vs T 88.4 77.1 86.8 75.5 73.3
T vs Z 88.4 72.3 87.4 75.1 73.8
Z vs P 85.4 79.4 83.7 69.9 74.5
Z vs T 85.7 73.5 84.4 77.5 76
Z vs Z 92.9 87.8 92.1 78.3 85.1
Avg. 88.5 78.8 87.4 74.9 75.6

12079Multimedia Tools and Applications (2024) 83:12059–12087	

1 3

for processing image data. However, although the Transformer with CNN is more appro-
priate for processing image data, it shows a poorer performance than that of MLP. This
may be explained by the excessively deep network of the Transformer with CNN. Since
CNN and transformer sequentially process data, the network can be overfitted to the data.

Moreover, our approach focuses on predicting the future movements of the main force,
while another approach aim to decide the destination of all armies [45]. Both approaches
can have their advantages and disadvantages. For instance, in the early stages of a game,
where the number of units is relatively small, predicting the movements of all units may
be more feasible and useful. Nonetheless, as the game progresses and the number of units
increases, it may become more practical and effective to focus on predicting the move-
ments of the main force.

Although our method outperforms baselines, several limitations must be considered.
First, our method is an ensemble approach that requires more computational resources dur-
ing training and inferring. Table 6 shows inference times and the number of parameters
of the proposed model and non-ensemble baselines. We produced this result using the
NVIDIA V100 GPU. Except for the Transformer with CNN, the other four models were
8.01–24.74 ms faster than the proposed method. Also, the proposed model has 34 million
param- eters, which is larger than all baselines. However, this slow inference will not be
a problem when applying it to real-time gameplay, because it can still infer more than 30
times in a second. In addition, unlike previous approaches for tactical decision making that
have used RL [62, 66], our method is a supervised learning scheme. Thus, our approach
requires a large amount of training data. Also, the performance of the trained model
depends on the data quality. This is a double-edged sword because the performance can be
easily improved using data of good quality but with poor quality data, the performance will
deteriorate. Furthermore, since our approach simply imitates demonstrations from the data,
the trained model is less likely to outperform the best human policy represented in the data.
Future work can address this issue using the self-supervised method [29] or offline RL [2]
to make the model outperform human policies from the data.

In the case of meta-ensemble models (meta decision tree and meta SVM), they exhib-
ited poorer performance, compared with the proposed majority voting approach. However,
the SVM accuracy was almost identical to the maximum accuracy of the three models used
in the ensemble (CNN, decision tree, and ViT). Because the meta models are trained using
the same data, they appear to imitate the prediction of the model that was most accurate
when using the training data.

The confusion matrix of the proposed model for all data samples is shown in Fig. 13.
The proposed model typically predicted Stop, PMB, EMB, and EMF accurately, but it was
correct less often for PEB and EEB. The model often confused labels of extended bases;
the accuracies for both PEB and EEB are low. This result is explained by the uncertainties
in base positions. Unlike the position of the main base, the positions of extended bases

Table 6   Inference time and number of parameters of proposed and similar existing models

Ensemble of CNN, DT,
and ViT (proposed)

CNN Decision
tree (DT)

ViT (Vision
Transformer)

MLP [38] Transformer
with CNN
[41]

Inference time (ms) 24.91 16.9 0.17 7.84 1.63 35.42
of parameters (mil-

lion)
34 11 0 22 4 11

12080	 Multimedia Tools and Applications (2024) 83:12059–12087

1 3

depend on the players, and there can be more than one extended base. Decisions related to
such bases differ according to the players and their strategies. Therefore, from a modeling
viewpoint, it is challenging to infer a human decision about an extended base. Also, the
model often predicted non-Stop labels as Stop, reflecting label imbalance. As shown in
Fig. 8, Stop is the most common label (25.26%).

Figure 14 shows the test accuracy for all data samples over time. In the early stage of
a match, the accuracy is very high because most units are workers, and they typically stay
near their base. It then decreases sharply due to the production of battle units, which are

Fig. 13   Confusion matrix of
the proposed model, for all test
data samples of the nine match
types. The number in each cell is
the ratio of the sample number
to the total number of samples.
EEB: enemy’s expansion base,
EMB: enemy’s main base,
EMF: enemy’s main force, PEB:
player’s expansion base, PMB:
player’s main base. The model
often confuses non-Stop labels
and Stop labels. Also, the model
usually predicts Stop, PMB,
EMB, and EMF correctly, but
often confuses PEB and EEB

Fig. 14   Test accuracy of the
proposed model for all test data
samples over time

12081Multimedia Tools and Applications (2024) 83:12059–12087	

1 3

then organized into a new main force. After approximately 250 s, the accuracy gradually
decreases. This can be interpreted as reflecting insufficient training data because the number
of samples decreases over time, as shown in Fig. 7. This might also be caused by the simul-
taneous and gradual reduction in the ratio of the main force, as shown in Figs. 11 and 12.

4.3 � Generalization over other RTS games

In this section, we discuss the potential challenges of applying the proposed approach to
other RTS games. Although we implemented the proposed method on StarCraft, the pro-
posed approach can be generalized onto other RTS games. To apply the proposed approach,
three steps are required: collecting replays and extracting data from them, detecting the
main force and labeling its future direction, and training the ensemble model using proper
input encoding.

As most RTS games are repayable and use the available extraction software, collect-
ing and processing the replays is typically straightforward. Considering the replays, the
labels for the main force can be determined using the main force detection algorithm
(Algorithm 1). However, this algorithm requires the parameters of each unit (IP, DF, IR),
which the user must manually define based on the game. Finally, to train the model, the
user must provide proper input encoding. This study encoded the game scene into a stack
of each unit’s and building’s influence maps, which were automatically generated based on
their parameters. Therefore, the influence maps can be readily created after defining the
parameters, and the user needs to select only the appropriate unit parameters to apply the
proposed method.

Moreover, an essential consideration of applying this method to other RTS games is the
significance of the main force in that game. As the Lanchester’s laws are applicable to the
RTS games, managing several units by clustering them into forces is a common strategy.
Thus, the main force is likely to exist in the replays of the players. However, the effective-
ness of the proposed approach may differ depending on the ratio of the main force in the
game. In the analysis of the StarCraft replay data, approximately 40% of units pertained to
the main force and account for approximately 60% of the influence. This suggests that the
main force requires a substantial part of the military power, and its operation is a critical part
of the game. However, the proposed method may be less effective in a game in which the
ratio of the main force is less than that in the StarCraft. This is a potential limitation of the
proposed approach, and a possible future direction is to address this issue by predicting the
movements of the multiple forces. Another potential limitation is that the proposed method
cannot handle tactical aspects that are not related to the main force. For instance, at the start
of a game, a player might employ various tactics to disrupt their opponent’s progress, such
as harassing them with a scattered group of units as part of a “rush” strategy or deliberately
obstructing the opponent’s base development to force them to rethink their approach.

4.4 � Applications

In this section, we discuss the mechanisms through which the proposed approach can
improve the gameplay of RTS game agents. A potential application is to incorporate our
approach as a module within AI bots, where the agent can determine the future direction
of the main force based on the pre- dictions of the ensemble model. Considering the fog
of war, the model can be seamlessly integrated into the gameplay. The trained ensemble
model can be directly used without additional training or be trained online while playing

12082	 Multimedia Tools and Applications (2024) 83:12059–12087

1 3

games to efficiently adapt to new games and strategies of the RTS agent. However, the
online approach appears with the risk of overfitting. Applying our approach to the RTS
game agents is an interesting avenue for future research.

Another possible application of the proposed approach is to predict the movements of
the enemy main force. Although the proposed approach focuses on the allied main force,
it can be applied to the main force of the enemy. To this end, the model needs to handle
partial information, thereby creating challenges in training. The prediction techniques such
as those presented in [35] reveal the fog of war can address this issue. Therefore, successful
prediction of the movements of the main force of the enemy can enable the agent to infer
the opponent’s strategy and employ appropriate precautions.

5 � Conclusion

Recently, StarCraft became an appealing environment for AI research because it provides
varied and complex problems. Although tactics are an important part of RTS games, previ-
ous studies were based on heuristics and replays were not utilized for learning tactics.

In this work, we proposed a tactical decision-making method based on learning to con-
trol a main force using deep learning from replays of human games. We extracted approxi-
mately 3 million data samples from replays, then labeled them according to six catego-
ries defined by professional human players. Each data sample was converted into 29–35
channels as the input for our learning model. We used CNNs and ViTs—some of the
most widely used techniques in deep learning research—to process this large among of
data and its high-dimensional inputs. We built ensemble models using CNNs, ViTs and
a decision tree to successfully guess the future movements of the main forces of players.
We trained nine ensemble models to cover the different types of matches. The experimen-
tal results showed that the proposed method successfully estimated the six-class problem,
with top-3, -2, and -1 accuracies of 92.9%, 81.4%, and 63.3%, respectively. The proposed
model outperformed the base- line models for all nine match types in terms of the top-
3, -2, and -1 accuracies. Also, we analyzed human decision-making processes related to
the main force and showed that it accounts for approximately 60% of all units’ influence
and is thus essential for tactics. We formulated the main force detection problem accord-
ing to the suggestions of professional human players, for whom handling the main force is
critical throughout the match. Interpretation of the intentions of human players in the com-
plex environments of RTS games can be very demanding. Traditional methods of learn-
ing encounter many difficulties when applied to these environments, due to the vast search
space and endless number of possible actions. One advantage of our model is that replay
data do not require complex pre-processing before the learning process.

We believe that our method could lead to new macro-level tactical decision-making
problems in RTSs based on the perspective of human players. In addition, StarCraft AI
research may benefit from the application of our model for building systems in terms of the
build order, scouting, resource management, etc.

However, although our method successfully inferred human intentions when dealing with
the main force, there is potential for improvement. Current image processing CNNs and a
ViT do not perfectly learn human StarCraft tactics. Because neural networks are increasingly
applied to various domains, they are being transformed, improved, and developed to suit such
domains. In addition, although our analysis suggests that players have a single main force
in most cases, however, there could be a case where the units are equally distributed among

12083Multimedia Tools and Applications (2024) 83:12059–12087	

1 3

multiple forces rather than concentrated on a single main force. Considering such cases is one
of the possible future improvements.

Future work should focus on the improvement of deep neural networks that learn human
intentions in complex environments. One such example is that of handling the relationships
among forces. In this work, we only focused on the main force; however, strategy and tac-
tics include setting the roles of forces and managing relations between them. In deep learn-
ing, graph neural networks (GNNs) are widely used for handling such relations through their
strong inductive bias. GNNs have already been applied to micromanagement by focusing on
the relations between units [59]. Thus, it may be useful for managing the relations among
forces.

One direction for future work is the automation of the handcrafted parts of our approach.
Currently, we determine each unit’s parameters and categorize the main force movement based
on heuristics, which may be suboptimal and may limit the performance of our approach. Auto-
mating these processes could lead to more efficient learning and better overall performance.

Another area for improvement is the consideration of the Rock Scissor Paper (RSP) rela-
tionships between units. Although our approach focuses on the main force, the composition of
the enemy forces can greatly impact the effectiveness of the main force. For instance, a small
cluster of certain units might be able to defeat a force of strong units, which could render the
main force less impactful. By accounting for RSP relationships and other strategic considera-
tions, our approach could be enhanced to better adapt to different game situations and improve
its overall performance.

On the other hand, our method could be improved in a more practical way. In this work, we
classified the destination of the main force into six categories. Instead of this, directly predict-
ing the trajectory would allow for more continuous and flexible control for the main force.
Furthermore, not only movement but also the composition of the forces is important in terms
of strategy. Relations among forces may be affected by their unit composition. This point of
view provides a path for future research. We used simple pre-processing methods based on
timing and the amount of minerals to exclude non-informative data from the replays; how-
ever, this process must be modified to include a mechanism for identifying only the critical
moments in matches (e.g., combat).

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s11042-​023-​15742-x.

Funding  This work was supported by the National Research Foundation of Korea (NRF) grant funded by
the Korean government Ministry of Science and ICT (MSIT) (2021R1A4A1030075).

Data availability  The datasets generated during and/or analysed during the current study are available from
the corresponding author on reasonable request.

Declarations 

Conflict of interests  Authors have no conflicts of interest.

References

	 1.	 Adil K, Jiang F, Liu S, Jifara W, Tian Z, Fu Y (2017) State-of-the-art and open challenges in rts game-
ai and starcraft. Int J Adv Comput Sci Appl 8(12):16–24

	 2.	 Agarwal R, Schuurmans D, Norouzi M (2020) An optimistic perspective on offline reinforcement
learning. In International Conference on Machine Learning, pp 104–114

https://doi.org/10.1007/s11042-023-15742-x
https://doi.org/10.1007/s11042-023-15742-x

12084	 Multimedia Tools and Applications (2024) 83:12059–12087

1 3

	 3.	 Andersen PA, Goodwin M, Granmo OC (2018) Deep RTS: a game environment for deep reinforce-
ment learning in real-time strategy games. In 2018 IEEE conference on computational intelligence and
games (CIG), pp 1–8

	 4.	 Baek IC, Kim KJ (2018, August) Web-Based Interface for Data Labeling in StarCraft. In 2018 IEEE
Conference on Computational Intelligence and Games (CIG), pp 1–2

	 5.	 Barriga NA, Stanescu M, Besoain F, Buro M (2019) Improving rts game ai by supervised policy learn-
ing, tactical search, and deep reinforcement learning. IEEE Comput Intell Mag 14(3):8–18. https://​doi.​
org/​10.​1109/​MCI.​2019.​29193​63

	 6.	 Beal R, Chalkiadakis G, Norman TJ, Ramchurn SD (2020) Optimising game tactics for football.
https://​arxiv.​org/​pdf/​2003.​10294.​pdf

	 7.	 Burda Y, Edwards H, Storkey A, Klimov O (2019) Exploration by random network distillation. In
Seventh International Conference on Learning Representations, pp 1–17

	 8.	 Buro M (2003) Real-time strategy gaines: a new AI research challenge. In Proceedings of the 18th
international joint conference on Artificial intelligence, pp 1534–1535

	 9.	 Buro M (2002) ORTS: A hack-free RTS game environment. In International Conference on Computers
and Games, Berlin, Heidelberg: Springer Berlin Heidelberg, pp 280–291

	10.	 Čertický M, Churchill D, Kim K-J, Čertický M, Kelly R (2018) Star-craft ai competitions, bots, and
tournament manager software. IEEE Trans Games 11(3):227–237

	11.	 Chen L, Lu K, Rajeswaran A, Lee K, Grover A, Laskin M, Abbeel P, Srinivas A, Mordatch I (2021)
Decision transformer: Reinforcement learning via sequence modeling. Adv Neural Inform Process
Syst 34:15084–15097

	12.	 Cho HC, Kim KJ, Cho SB (2013) Replay-based strategy prediction and build order adaptation for
StarCraft AI bots. In 2013 IEEE Conference on Computational Intelligence in Games (CIG) pp 1–7

	13.	 Cho H, Park H, Kim C-Y, Kim K-J (2016) Investigation of the effect of “fog of war” in the prediction
of starcraft strategy using machine learning. Comput Entertain (CIE) 14(1):1–16

	14.	 Churchill D, Buro M (2011) Build order optimization in starcraft. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Entertainment 7(1):14–19

	15.	 Churchill D, Buro M (2012) Incorporating search algorithms into RTS game agents. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 8(3):2–7

	16.	 Churchill D, Buro M (2013) Portfolio greedy search and simulation for large-scale combat in StarCraft.
In 2013 IEEE Conference on Computational Intelligence in Games (CIG) pp 1–8

	17.	 Churchill D, Saffidine A, Buro M (2012) Fast heuristic search for RTS game combat scenarios. In
Proceedings of the AAAI conference on artificial intelligence and interactive digital entertainment
8(1):112–117

	18.	 Ciolino M, Kalin J, Noever D (2020) The Go Transformer: Natural Language Modeling for Game Play.
In 2020 Third International Conference on Artificial Intelligence for Industries (AI4I) pp 23–26

	19.	 Dereszynski E, Hostetler J, Fern A, Dietterich T, Hoang TT, Udarbe M (2011) Learning probabilistic
behavior models in real-time strategy games. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment 7(1):20–25

	20.	 Dietterich TG (2000) Ensemble methods in machine learning. In Multiple Classifier Systems: First
International Workshop, MCS 2000 Cagliari, Italy, June 21–23, 2000 Proceedings 1 pp 1–15 Springer
Berlin Heidelberg

	21.	 Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Houlsby N. An Image
is Worth 16x16 Words: Transformers for Image Recognition at Scale. In International Conference on
Learning Representations

	22.	 Farooq SS, Oh I-S, Kim M-J, Kim KJ (2016) Starcraft ai competition report. AI Mag 37(2):102–107
	23.	 Foerster J, Nardelli N, Farquhar G, Afouras T, Torr PH, Kohli P, Whiteson S (2017) Stabilising experi-

ence replay for deep multi-agent reinforcement learning. In International conference on machine learn-
ing, PMLR pp 1146–1155

	24.	 Gabriel I, Negru V, Zaharie D (2012) Neuroevolution based multi-agent system for micromanagement
in real-time strategy games. In Proceedings of the fifth balkan conference in informatics pp 32–39

	25.	 Garćıa-Sánchez P, Tonda A, Mora AM, Squillero G, Merelo JJ (2015) Towards automatic StarCraft
strategy generation using genetic programming. In 2015 IEEE Conference on Computational Intel-
ligence and Games (CIG) pp 284–291

	26.	 Goodfellow IJ, Mirza M, Xu B, Ozair S, Courville A, Bengio Y (2014) Generative Adversarial Net-
works. https://​arxiv.​org/​pdf/​1406.​2661.​pdf

	27.	 Gudmundsson SF, Eisen P, Poromaa E, Nodet A, Purmonen S, Kozakowski B, Cao L (2018) Human-
like playtesting with deep learning. In 2018 IEEE Conference on Computational Intelligence and
Games (CIG) pp 1–8

https://doi.org/10.1109/MCI.2019.2919363
https://doi.org/10.1109/MCI.2019.2919363
https://arxiv.org/pdf/2003.10294.pdf
https://arxiv.org/pdf/1406.2661.pdf

12085Multimedia Tools and Applications (2024) 83:12059–12087	

1 3

	28.	 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern recognition pp 770–778

	29.	 Ho J, Ermon S (2016) Generative adversarial imitation learning. Adv Neural Inf Process Systs 29
	30.	 Hoel C-J, Driggs-Campbell K, Wolff K, Laine L, Kochenderfer MJ (2019) Combining planning and

deep reinforcement learning in tactical decision making for autonomous driving. IEEE transactions on
intelligent vehicles 5(2):294–305

	31.	 Hu Y, Li J, Li X, Pan G, Xu M (2018) Knowledge-guided agent-tactic-aware learning for StarCraft
micromanagement. In Proceedings of the 27th International Joint Conference on Artificial Intelligence
pp 1471–1477

	32.	 Huang J, Yang W (2018) A multi-size convolution neural network for RTS games winner prediction.
In MATEC Web of Conferences 232:01054. EDP Sciences

	33.	 Huang W, Yin Q, Zhang J, Huang K (2021) Learning Macromanagement in Starcraft by Deep Rein-
forcement Learning. Sensors 21(10):3332

	34.	 Irfan A, Zafar A, Hassan S (2019) Evolving levels for general games using deep convolutional gen-
erative adversarial networks. In 2019 11th Computer Science and Electronic Engineering (CEEC) pp
96–101

	35.	 Jeong Y, Choi H, Kim B, Gwon Y (2020) Defoggan: Predicting hidden information in the starcraft fog
of war with generative adversarial nets. In Proceedings of the AAAI Conference on Artificial Intelli-
gence 34(4):4296–4303

	36.	 Joo H-T, Lee S-H, Bae C-M, Kim K-J (2023) Learning to automatically spectate games for esports
using object detection mechanism. Expert Syst Applic 213:118979

	37.	 Justesen N, Risi S (2017) Continual online evolutionary planning for in-game build order adaptation in
StarCraft. In Proceedings of the Genetic and Evolutionary Computation Conference pp 187–194

	38.	 Justesen N, Risi S (2017) Learning macromanagement in starcraft from replays using deep learning. In
2017 IEEE Conference on Computational Intelligence and Games (CIG) pp 162–169

	39.	 Karavolos D, Liapis A, Yannakakis GN (2018) Pairing character classes in a deathmatch shooter game
via a deep-learning surrogate model. In Proceedings of the 13th international conference on the Foun-
dations of digital games pp 1–10

	40.	 Khalifa A, Bontrager P, Earle S, Togelius J (2020) Pcgrl: Procedural content generation via reinforce-
ment learning. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digi-
tal Entertainment 16(1):95–101

	41.	 Khan MJ, Hassan S, Sukthankar G (2021) Leveraging Transformers for StarCraft Macromanage-
ment Prediction. In 2021 20th IEEE International Conference on Machine Learning and Applications
(ICMLA) pp 1229–1234

	42.	 Köostler H, Gmeiner B (2013) A multi-objective genetic algorithm for build order optimization in
starcraft ii. KI-Künstliche Intelligenz 27(3):221–233

	43.	 Lample G, Chaplot DS (2017) Playing FPS games with deep reinforcement learning. In Proceedings of
the AAAI Conference on Artificial Intelligence 31(1)

	44.	 Lee CM, Ahn CW (2021) Feature extraction for starcraft ii league prediction. Electronics 10(8):909
	45.	 Lee D, Tang H, Zhang J, Xu H, Darrell T, Abbeel P (2018) Modular architecture for starcraft ii with

deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment 14(1):187–193

	46.	 Lin Z, Gehring J, Khalidov V, Synnaeve G (2017) Stardata: A starcraft ai research dataset. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
13(1):50–56

	47.	 Ling C, Tollmar K, Gisslén L (2020) Using deep convolutional neural networks to detect rendered
glitches in video games. In Proceedings of the AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment 16(1):66–73

	48	 Liskowski P, Jáskowski W, Krawiec K (2018) Learning to play othello with deep neural networks.
IEEE Trans Games 10(4):354–364

	49.	 Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Kavukcuoglu K (2016) Asynchro-
nous methods for deep reinforcement learning. In International conference on machine learning pp
1928–1937

	50.	 Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Belle-mare MG, Graves A, Riedmiller M, Fid-
jeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature
518(7540):529–533

	51.	 Oh J, Chockalingam V, Lee H (2016) Control of memory, active perception, and action in minecraft. In
International conference on machine learning, pp 2790-2799

	52.	 Olesen JK, Yannakakis GN, Hallam J (2008) Real-time challenge balance in an RTS game using
rtNEAT. In 2008 IEEE Symposium On Computational Intelligence and Games pp 87–94

12086	 Multimedia Tools and Applications (2024) 83:12059–12087

1 3

	53.	 Ontanón S, Synnaeve G, Uriarte A, Richoux F, Churchill D, Preuss M (2013) A survey of real-
time strategy game ai research and competition in starcraft. IEEE Trans Comput Intell AI Games
5(4):293–311

	54.	 Ontañón S, Barriga NA, Silva CR, Moraes RO, Lelis LH (2018) The first microrts artificial intel-
ligence competition. AI Mag 39(1):75–83

	55.	 Rashid T, Samvelyan M, De Witt CS, Farquhar G, Foerster J, Whiteson S (2020) Monotonic
value function factorisation for deep multi-agent reinforcement learning. J Mach Learn Res
21(1):7234–7284

	56.	 Svendsen JB, Rathe EA (2012) Micromanagement in StarCraft using potential fields tuned with a
multi-objective genetic algorithm. Norwegian University of Science and Technology

	57.	 Robertson G, Watson I (2014) A review of real-time strategy game ai. Ai Mag 35(4):75–104
	58.	 Sánchez-Ruiz AA, Miranda M (2017) A machine learning approach to pre- dict the winner in

starcraft based on influence maps. Entertain Comput 19:29–41
	59.	 Shen S, Fu Y, Su H, Pan H, Qiao P, Dou Y, Wang C (2021) Graphcomm: A graph neural network

based method for multi-agent reinforcement learning. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 3510–3514

	60.	 Shin Y, Kim J, Jin K, Kim YB (2020) Playtesting in match 3 game using strategic plays via rein-
forcement learning. IEEE Access 8:51593–51600

	61.	 Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driess-che G, Schrittwieser J, Antono-
glou I, Panneershelvam V, Lanctot M et al (2016) Mastering the game of go with deep neural net-
works and tree search. Nature 529(7587):484–489

	62.	 Soemers D (2014) Tactical planning using MCTS in the game of StarCraft. Doctoral dissertation,
Department of Knowledge Engineering, Maastricht University

	63.	 Sopov V, Makarov I (2021) Transformer-Based Deep Reinforcement Learning in VizDoom. In
International Conference on Analysis of Images, Social Networks and Texts, pp 96–110. Cham:
Springer International Publishing

	64.	 Stanescu M, Barriga N, Buro M (2014) Hierarchical adversarial search applied to real-time strategy
games. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment 10(1):66–72

	65.	 Stanescu M, Barriga NA, Hess A, Buro M (2016) Evaluating real-time strategy game states using
convolutional neural networks. In 2016 IEEE Conference on Computational Intelligence and
Games (CIG), pp 1–7

	66.	 Synnaeve G, Bessiere P (2012) Special tactics: A bayesian approach to tactical decision-making. In
2012 IEEE Conference on Computational Intelligence and Games (CIG) pp 409–416

	67.	 Synnaeve G, Bessiere P (2011) A Bayesian model for opening prediction in RTS games with appli-
cation to StarCraft. In 2011 IEEE Conference on Computational Intelligence and Games (CIG’11),
pp 281–288

	68.	 Takada K, Iizuka H, Yamamoto M (2017) Reinforcement learning for creating evaluation function
using convolutional neural network in hex. In 2017 Conference on Technologies and Applications
of Artificial Intelligence (TAAI), pp 196–201

	69.	 Uriarte A, Ontanón S (2012) Kiting in RTS games using influence maps. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 8(3):31–36

	70.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Polosukhin I (2017) Attention
is all you need. Adv Neural Inf Process Syst 30

	71.	 Vazifedan A, Izadi M (2022) Predicting human behavior in size-variant repeated games through
deep convolutional neural networks. Progress Artif Intell 11(1):15–28

	72.	 Vinyals O, Ewalds T, Bartunov S, Georgiev P, Vezhnevets AS, Yeo M, Tsing R (2017) Starcraft ii:
A new challenge for reinforcement learning. https://​arxiv.​org/​pdf/​1708.​04782.​pdf

	73.	 Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, Chung J, Choi DH, Powell R,
Ewalds T, Georgiev P et al (2019) Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature 575(7782):350–354

	74.	 Watson N, Hendricks S, Stewart T, Durbach I (2021) Integrating machine learning and decision
support in tactical decision-making in rugby union. J Oper Res Soc 72(10):2274–2285

	75.	 Xu S, Kuang H, Zhi Z, Hu R, Liu Y, Sun H (2019) Macro action selection with deep reinforcement
learning in starcraft. In Proceedings of the AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment 15(1):94–99

	76.	 Xu Y, Chen L, Fang M, Wang Y, Zhang C (2020) Deep reinforcement learning with transformers
for text adventure games. In 2020 IEEE Conference on Games (CoG) pp 65–72

https://arxiv.org/pdf/1708.04782.pdf

12087Multimedia Tools and Applications (2024) 83:12059–12087	

1 3

	77.	 Ye D, Chen G, Zhang W, Chen S, Yuan B, Liu B, Chen J, Liu Z, Qiu F, Yu H et al (2020) Towards
playing full moba games with deep reinforcement learning. Adv Neural Inform Process Syst
33:621–632

	78.	 Young J, Hawes N (2012) Evolutionary learning of goal priorities in a real-time strategy game. In
Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
8(1):87–92

	79.	 Young J, Smith F, Atkinson C, Poyner K, Chothia T (2012) Scail: An integrated starcraft ai system. In
2012 IEEE Conference on Computational Intelligence and Games (CIG), pp 438–445

	80.	 Zahavy T, Haroush M, Merlis N, Mankowitz DJ, Mannor S (2018) Learn what not to learn: Action
elimination with deep reinforcement learning. Adv Neural Inf Process Syst 31

	81.	 Zhang S, Wu Y, Ogai H, Inujima H, Tateno S (2021) Tactical decisionmaking for autonomous driving
using dueling double deep q network with double attention. IEEE Access 9:151983–151992

	82.	 Zhen JS, Watson I (2013) Neuroevolution for micromanagement in the real-time strategy game
StarCraft: Brood War. In AI 2013: Advances in Artificial Intelligence: 26th Australasian Joint Confer-
ence, Dunedin, New Zealand, December 1-6, 2013. Proceedings 26 pp 259–270. Springer Interna-
tional Publishing

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

	Deep ensemble learning of tactics to control the main force in a real-time strategy game
	Abstract
	1 Introduction
	2 Background
	2.1 StarCraft AI
	2.1.1 StarCraft AI using replays

	2.2 Tactical decision-making
	2.3 Deep learning for games

	3 Methods
	3.1 Detecting the main force
	3.2 Categorization of movement directions for the main force
	3.3 Data labeling for human replays
	3.4 Deep learning for decision making
	3.5 Comparative evaluation

	4 Results and discussion
	4.1 Data analysis
	4.2 Learning and evaluation of the deep learning model
	4.3 Generalization over other RTS games
	4.4 Applications

	5 Conclusion
	Anchor 21
	References

